Plane augmentation of plane graphs to meet parity constraints
نویسندگان
چکیده
منابع مشابه
Plane Graphs with Parity Constraints
Let S be a set of n points in general position in the plane. Together with S we are given a set of parity constraints, that is, every point of S is labeled either even or odd. A graph G on S satisfies the parity constraint of a point p ∈ S, if the parity of the degree of p in G matches its label. In this paper we study how well various classes of planar graphs can satisfy arbitrary parity const...
متن کاملStrong parity vertex coloring of plane graphs
Czap and Jendrol’ introduced the notions of strong parity vertex coloring and the corresponding strong parity chromatic number χs. They conjectured that there is a constant bound K on χs for the class of 2-connected plane graphs. We prove that the conjecture is true with K = 97, even with an added restriction to proper colorings. Next, we provide simple examples showing that the sharp bound is ...
متن کاملConnectivity augmentation in plane straight line graphs
It is shown that every connected planar straight line graph with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar straight line graph with at most b(2n − 2)/3c new edges. It is also shown that every planar straight line tree with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar topological graph by adding at most bn/2c edge...
متن کاملDecompositions of plane graphs under parity constrains given by faces
An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f . In th...
متن کاملLooseness of Plane Graphs
A face of a vertex coloured plane graph is called loose if the number of colours used on its vertices is at least three. The looseness of a plane graph G is the minimum k such that any surjective k-colouring involves a loose face. In this paper we prove that the looseness of a connected plane graph G equals the maximum number of vertex disjoint cycles in the dual graph G∗ increased by 2. We als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2020
ISSN: 0096-3003
DOI: 10.1016/j.amc.2020.125513